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Neurobiology of Observational Fear, a Model
for Affective Empathy
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Empathy, the ability to understand and share emotions of other conspecific, is an essential component for
survival of social animals. It forms the foundation of various social behaviors, including emotional contagion,
prosocial behavior, theory of mind, and perspective taking. Observational fear, a form of emotional contagion,
has been demonstrated in animals including humans. Lack of the capacity for observational fear often forms
one of the major symptoms associated with diverse psychiatric conditions. Establishment of the assay for ob-
servational fear in mice has allowed studying the neural mechanism of affective empathy at the genetic and

circuit level. In my talk I will try to provide an overview of current research on neurobiology of empathy.
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I O|=F w4 (TMICH AM2|stay)

In the present study, we implemented prosocial VR
content focusing on embodying a virtual character to
modulate players' mindsets. The virtual body served as
a stepping stone, enabling players to identify with the
character and cultivate a growth mindset as they fol-
lowed mission instructions. We considered several im-
plementation factors to assist players in positioning
within the VR experience, including positive feed-
back, content difficulty, background lighting, and
multimodal feedback. We conducted an experiment to
investigate the intervention's effectiveness in increas-
ing empathy. Our findings revealed that the VR con-
tent and mindset training encouraged participants to
improve their growth mindsets and empathic motives.
This VR content was developed for college students
to enhance their empathy and teamwork skills. It has
the potential to improve collaboration in organiza-

tional and community environments.
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Brain—wide Networks for Emotion:
From Normal Traits to Disordered States
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Speech synthesis technology is increasingly utilized
across various applications, propelled by the rapid de-

velopment of diverse generative models. Recently,
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language models have extended their capabilities be-
yond traditional text, establishing themselves as cut-
ting-edge generative models for both image and
speech generation tasks. In this talk, I will first review
traditional speech synthesis Al technologies along
with our recent works. I will then introduce speech
language models, focusing on neural codec models
and neural codec language models. Additionally, I will
discuss several applications, including language mod-
el-based zero-shot speech synthesis, speech-to-speech
translation, singing voice synthesis, audio generation,

and speech editing systems.
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Speech comprehension under
cognitive load: behavioral and
electrophysiological findings

SAI2 1w « KAIST ORIEZ AL/ 0efs

The process by which listeners decode a linguistic
message in speech unfolds through multiple levels
(e.g., auditory, phonetic, lexical-semantic) and can in-
volve additional cognitive processes (e.g., working
memory, attention), especially in challenging listening
conditions. In this talk, I will introduce my research
using both behavioral and electrophysiological meth-
ods, which enable the examination of perceptual and
cognitive processes at those multiple levels during
speech comprehension. A recent behavioral study

conducted in our lab investigated speech compre-

B
o2t

N
re

2024 st=QIx[atets| shatyE]

Mind, Brain sData

hension under varying speech rates. Along with evalu-
ating the accuracy of speech comprehension, listening
effort (i.e., deliberate allocation of cognitive resources
to overcome difficulties during listening) associated
with different listening conditions was examined using
a dual-talk paradigm, where increased listening effort
(e.g., when speakers talk too fast) normally impairs
the performance on a simultaneous cognitive task.
This study demonstrated that both faster and slower
speech increase listening effort and cause various
types of sentence recall errors (e.g., phonetic, syntac-
tic, retention of words in memory). We are also exam-
ining electroencephalograms (EEG) obtained from
subjects listening to speech in diverse adverse con-
ditions, including those with different speech rates.
The N400 and neural tracking responses were meas-
ured to examine lexical-semantic and auditory proc-
essing, respectively. With EEG, we aim to better un-
derstand behavioral data by zooming in on each proc-
ess (e.g., acoustic, lexical-semantic) in detail, inves-
tigating how they interact, and revealing specific ways
listeners cope with difficulties understanding speech
(e.g., relying more on semantic context). Recent ad-
vancements in analysis techniques, including large
language models, have begun to allow researchers to
extract neural responses at multiple levels without the
need for controlled sentence stimuli or multiple repe-
titions as required in ERP paradigms. I will also in-
troduce some of these methods I use for EEG and dis-
cuss the inquiries that can be further explored using

this approach in speech and language science.
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[15:00-16:20]

Hippocampal representations of
associative social memory

Ol HiAL e IBS QIX| & Aty ittt

Within a social group, animals engage in frequent
and repetitive interactions with one another. During
these interactions, animals recognize others as unique
individuals, retrieve and update the value information
assigned to the individual. These abilities are essential
for establishing and maintaining social relationships in
cohesive social groups. However, the neural mecha-
nism underlying association between social identity
and reward value remain poorly understood. To iden-
tify neural activities related to individual identity as
well as associated reward values in the dorsal CAl, we
developed Go-NoGo social discrimination paradigms
that required subject mice to distinguish between fa-
miliar mice based on their individually unique charac-
teristics and associate them with reward availability.
Two-photon calcium imaging revealed that dorsal
CAl hippocampal neurons represented reward ex-
pectation during social, but not non-social tasks, and
these activities were maintained over days regardless
of the identity of the associated mouse. Furthermore,
hippocampal neurons accurately discriminated be-
tween familiar mice either in the reward or no-reward
category at both the single-cell and population levels.

We also demonstrated that an ever-changing subset of

14

dorsal CA1 neurons contributes to the stable encoding
of individual-specific information over days. Taken
together, our findings suggest that the neuronal activ-
ities in CA1 provide possible neural substrates for as-

sociative social memory.

Neural Representation of Egocentric
Space in the Retrosplenial Cortex

LR =« MSTH QIX|2fSt

Neural representation of the environmental features
in an egocentric coordinate system is important for
constructing an egocentric cognitive map. To create
a geometrically detailed egocentric cognitive map,
neural representations of the edges and vertices of en-
vironmental features are necessary. While egocentric
neural representations of edges, such as egocentric
border cells and egocentric boundary vector cells ex-
ist, those of vertices are currently unknown. Using in
vivo calcium imaging of granular retrosplenial cortex
(RSC) neurons in mice freely exploring various envi-
ronmental geometries, we discovered neurons that
generated spatial receptive fields exclusively near the
vertices of environmental geometries, which we
termed vertex cells. Each spatial receptive field of ver-
tex cells occurred at a specific orientation and dis-
tance relative to the animal, tuned by head direction,
indicating an egocentric vector coding of the vertex.
Subpopulations of egocentric vertex cells could also
code the edges, suggesting conjunctive egocentric

vector coding of vertices and edges. Moreover, the
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goal directed navigation task selectively strengthened
the egocentric vector coding of the vertex near the
goal location. Together, these results suggest that the
egocentric vector coding of vertices and edges by RSC
neurons may help delineate a geometrically detailed
egocentric cognitive map that could guide goal-di-

rected navigation.

Microsystems for recording neural
signals and stimulation on brain

ZUZ 74 + 1240 ofnjata)

Investigation of the chemical and electrical signals
in the brain in vivo is critical for studying functional
connectivity and brain diseases. Most previous studies
have focused on observing either the electrical signals
or the chemical signals from specific brain regions.
Recently, MEMS neural probes and minimized sam-
pling probes have been introduced. They are used for
in-depth brain study with minimal tissue damage and
high spatial resolution during in vivo experiments.
However, the initially developed minimized implant-
able devices have limited abilities to observe both the
co-localized electrical signals and the various chem-
ical signals required for in-depth studies. Herein, we
present a bimodal MEMS neural probe that is mono-
lithically integrated with an array of microelectrodes
for recording electrical activity, microfluidic channels
for sampling extracellular fluid, and a microfluidic in-
terface chip for multiple drug delivery and sample iso-

lation from the localized region at the cellular level.
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Additionally, we present the neural probe integrated
with chemical sensors as well as electrodes for re-
cording neural signals in a single platform.
Furthermore, we developed wireless systems for re-
cording various neural signals in behaving animals
without any interferences. In this work, we success-
fully demonstrated the functionality of our probe by
monitoring and modulating dual-mode (electrical and
chemical) neural activities in a co-localized region
with chemical and optical stimulation and at the same

time in vivo from behaving animals.
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[15:00-16:20]

The Folk Ascription of Moral Responsibility
to Artificial Intelligence

L s - M0 At

The functionalist conception of artificial moral re-
sponsibility, as proposed by Floridi (2013), asserts that
human agents causally accountable for Al wrong-
doings should be held morally responsible, regardless
of their awareness of potential wrongdoings and even
if their causal contributions are in and of themselves
morally neutral. For example, a programmer should
be held morally responsible for misconduct by an Al
that she designed, even if she was unaware of poten-
tial issues during the programming phase. Through a
meta-analysis of psychological experiments, our work
(currently under review), demonstrates a close align-
ment between this functionalist conception and the
folk understanding of artificial moral responsibility.
Specifically, when people attribute moral responsi-
bility to Als, this responsibility is often distributed
among the AI's users, programmers, and manu-
facturers (Lima et al. 2021). Moreover, people consid-
er these human stakeholders morally responsible for
Al's wrongdoings even when they do not regard the
stakeholders’ causal contributions to the Al's wrong-
doings as wrongful (Shank & DeSanti 2018).

The present paper aims to empirically validate the

meta-analysis described above. We plan to conduct
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two experimental studies to examine how people at-
tribute moral responsibility to Als under varying
conditions. Each study will feature eight scenarios,
manipulating factors such as whether an Al system
commits a wrongdoing and whether it is designed for
a specific or general purpose. Study 1 is designed to
replicate recent findings, testing whether people tend
to attribute moral responsibility directly to Als without
asking whether they regard causally accountable hu-
man agents also responsible for the Al wrongdoings
(e.g., Kneer 2021). On the other hand, Study 2 will
investigate how participants distribute moral respon-
sibility between various stakeholders—such as the Al
systems, users, and programmers—within the same
experimental conditions. We anticipate that in Study
1, where human agents are not explicitly mentioned,
participants will likely attribute moral responsibility to
Al systems. However, in Study 2, we expect a shift
in this tendency, with human stakeholders being held
more responsible for wrongdoings than the Als.
Furthermore, we hypothesize that in the case of do-
main-specific Al systems, programmers will be held
more responsible for wrongdoings than users, where-
as for domain-general Al systems, the tendency re-
verses, with users expected to bear greater respon-
sibility. These results could suggest that what appears
as attributions of moral responsibility to Als are in fact
covertly directed at causally accountable human
stakeholders, and that the extent of a human stake-
holder’s responsibility is proportional to their degree
of causal contribution to the AI's actions.

These expectations align with our meta-analysis,
suggesting that when people attribute moral responsi-
bility to Als, they are indeed considering the human
agents behind the Als as morally responsible. The
present study, combined with findings from studies
like Shank & DeSanti (2018), which show that people

distinguish between human agents’ causal contributions

18

to Al-actions and the moral significance of those ac-
tions, and Wilson et al. (2022), which indicate that at-
tributions of artificial moral responsibility do not aim
to inflict retributive punishment on human agents,
will demonstrate that people conceive of moral re-
sponsibility of Als primarily as human responsibility to
rectify design flaws that led to the AI's wrongdoings.
Hence the folk ascription of moral responsibility to Al

aligns well with the functionalist conception.

g SS9} 25X QX 23
(Concept Equivalence and a probabilistic
Model of Cognition)

Z[0|H 14 » Olafoqcy Hatnt

AA Bzt AdAoln g2 RS 7H S QIR
Q1R et} Aol HPAS B Sl A|Ald gt $a]e
A3 A AAZE AAE S IR whdolA] Gethe
A2 ottt 9o E 929 AlA 3/d(mental repre-
sentation)®] ¥4 gMFoleh= 39505 HolEo]7]d
£ TEAE 7] A AFUA ATt AlA A
gt 4342 &S AWsr] ofgrh £ A YolB
ot AA g oA Hlolu EAQEA RS H43lshA
A ARl fokE oA Hold 4= 9= Y o]
& AAIBELA} St

Sel= AA ZBE dolHE 7Hte g dS FA%T
o] 7/§¥<& dolf FtKdata space)lAe &
(likelihood function)2 ¥AYsIA} 3t} o] g mulL

22 Y oIyl tisiA e o 7id A4S 3183t

Y tﬂ Jelol] thsto] TERlEo] 7Hd & Q= 7id o=

1



o AN} Aol 7Y Ful-glolEd WA
(Kullback-Leibler divergence)oll 2]&sto] Fsst== 3t
t}. olof g} Ba7t AAsh= AlA RE2 F {9
AlA 7id 2o ZolE 7 Aol7t ofdet A= Aol=
siAsta, IEAES] de AR ides Wodd o
Aok AR A4 B3 & AJo] 2 ofgfgltt, o]
Ho7bs A4S Eldt JB o|Ho R Mol "=
(Dretske) K. o] 23} APHIFETE E3 A A0l /E=
9] 554 (equivalence) 71F0E FF ASEHE A4
d(coreferential & Hro5o]2] ¢l oFske wWHo 7
F5"3(concept equivalence) 7|FS 2 X4 HHTF A4
< AlRker). Feade EAEY A4 - AA == tide

A4 - o &SR] ¢l A sEAE ARE & =

do Aokt AnPos Lo

ZX|SE Soll 2 2lzie] xiEdn =8
L 14 « M 22lms

2] gto] JAtoA “AAd(autonomy)’ o] 7dS
5o Sa3t AT gtk FTAE0] QI7te] AW A}
&40] 7H ¢lar, EFHotop & Zoleks o YntHos
Sosta Qlk. e A AAE A A& EA 9l
of, tiFo] &g Ee] Fodte AL Qttol JIFAE
7} g2 WA ‘AgAl(autonomy)’ & AU 7| o], ol
TA GO R E HASE P9lof it AU ATtolA &

AlAoF Stk Zoldt,

L

=

2024 st=QIx[atets| shatyE]

Mind, Brain sData

ok
>~
rﬂ:
[
>
o
i)
Y
4
ok
A
2
N o
B
i
)
2
rok
o
rir
oLt
1o
oR
2

lo
hu =
o
&
[
PO
o
>
>
[l
sk
B
=2
2
sy
=
=2
1,
2
3o,
O,
rlr
=)

Ae/de AYeAl sl &2 2ol Akl 7t

g
= 7o) 2eBAHEe] 0RYUS A|H, o] oft

fmt)
1
1o
EN
o
i)
Al
v
)
o
1o
N
X
i,
N,
o,
%
fo
-
1,
rlr
o,

2
oo
o
H o o

AXIBRE ANARE Zudiet, whetd] e

B9 Aok

Fo] gl £EHe MY
5

a}

b
o 1T
)
1>
_\-1;_11
o
ne
>,

[
0

N

ol
ElojA= <t HH,

o
O
(e}
sk
)
o
noH

fid

%o, M K1
pas
Lo

r'\l

B

i)

1%

rr

EQ,

)
o 4N

Jé Fll‘

o2

4>
30
dlo
(¢
1o,
=
=T}
N,
O
S
rlr
N
o
o
=2,

1o
rr
ro,
du
N
WE
2
=
g
i
L,
ks
2
o2
ol

e 4
%0,
Ir
Y
2
)
rlr
o,

in}
)
|o
[l
X
e
o2
gk
4 o

g
p
i

N H
TN
o
o
Ho
>
N

=
<t
i
p

o,
<
o2t

My
o,
¥2 12

Al

v

2

ne,
=]
=
lly
)

e
(¢
i}
4

>
¥o,
o
n-
I,
b
i}

2,

_?_};
1o

no, M

PN
[l

o I
oo
b

0 O
ioo
& f
do R
s
i)

2

©,
i)
ol
30,
o

Al £97 PR A 2 4240l L7HG
A7he LA EAR FATH WARTHE, G914
o AgHolofolat she EAZ 1R WAle] © 44
F& e, oluf ojust oJule] AgAo] £ B9

£ AHshet] Q7Eolof SHeAS W o) B

19



2024 SIROIX[T}3t5| STH3

Mind, Brain esData
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Current status of non—invasive temporal
interference electrical stimulation

HSE D4 « ST SHTIHSLLS}
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Noninvasive deep brain stimulation (DBS) involves
using external devices to apply electrical stimulation
to specific brain regions without surgery or implanted
electrodes. This falls under 'electroceuticals,’ which
use electrical stimulation to treat various conditions by
altering neural activity. Temporal interference stim-
ulation (TIS) is an advanced form of noninvasive DBS
aiming for precise brain region targeting. It uses mul-
tiple electric fields at varying frequencies to create a
focused stimulation area within the brain. In this pre-
sentation, I will briefly introduce the current research
status of TIS and talk my two recent studies related
to TIS's neuromodulation effects on the brain. The
first explored TIS's impact on evoked phasic dop-
amine (DA) response in the rat’s striatum during the
medial forebrain bundle (MFB) stimulation. The sec-
ond study used functional magnetic imaging to assess
TIS's modulation effect on the Hippocampus in rhesus

monkeys.
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Non-Invasive Brain Stimulation
to Modulate Cognitive Functions

ORMEN T4 + Z2Y HAITste

Neural Oscillations< | HEF ] & & 7t A
H PAE 3ok SE2ARI WAUS YU E9], It
9] QA 7153 BT o] 9)om Neural Oscillations
o] Areof wet Q1A|7159] AolE Hol7| = Pt utet
A Neural Oscillations< 191805 4% 4= ¢lopd <l
A7V62] FATA 71AE 4= Q7] wiie] thekdt Wil s
Neural Oscillations& Z24838t= A-17F Wol 3= 9l
syrh FHZole HZE4 HAS (Non-Invasive Brain
Stimulation)& 53l 21$12<1 Neural Oscillations& ¢17F
St AA71ES] i RS 2K A7 Bl oF

Aol uAEH W4T B

ofk

e,
B
N
ofr
11}(e3
BN
2
_o‘_}:
fr e
v
oo
s
re
lly
fljo
B
=
ok
IS
&
i
it
ek

o
o,
ok
B9
o 0%
%

rorR

o
i,
=
qa
it
l..\>.l

o oo
-
R
>
r
i
o
H
r
.
o
Y
Lo
i
-0,
N,
N

Bx
i
ok
ok
s
Ho

oL o
oS i
o,
=
i
1o,
_O|_F‘
=
2
gt
i
ful

B
ozt

>
re



Application of non invasive vagus
nerve stimulation to various
degenerative brain disease
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Cortico—hippocampal networks underlying
temporal binding in episodic memory:
Insights from development and aging

Ol &0t w4~ « MBLH QUK |2kEty

The hippocampus, with its structural and functional
similarity across species, has been studied extensively
for its computational role in spatial mapping and epi-
sodic memory. However, the uniqueness of the human
cortex makes it challenging to understand the role of
the hippocampus and its coordinated activity with
distinct areas of the cortex in higher-level human
cognition. In this talk, I will present a view of corti-
co-hippocampal function in episodic memory, partic-
ularly on its role in providing a means to remember
the past in a temporally organized manner. I will pro-
vide behavioral and neural evidence from studies of
memory development in children and adolescents, as
well as evidence from studies of aging and Alzheimer’s
disease patients, that retrieving a temporal sequence
of events requires the concerted activity of the hippo-
campus along with specific regions of the frontal and

parietal lobes. I will conclude by proposing that such

21



2024 SIROIX[T}3t5| STH3

Mind, Brain aData

cortico-hippocampal networks underlie not only our
ability to re-experience the past but to bind the com-
ponents of memory into mental episodes that gives

rise to our simulation of the future.
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Artificial Intelligence Approaches
for Simulating Human Psychophysical
Testing of Low-Resolution Phosphene

Images for Artificial Vision

Auzs D4+ KIST lnfaioimis

In assessing the quality of artificial vision crafted
through emerging techniques, researchers often lean
on laborious human psychophysical experiments.
However, the visual prosthetic hardware and/or soft-
ware modifications additionally require the tedious
and costly psychophysical testing. Here, we explore
the efficacy of machine learning (ML) models in emu-
lating quaternary match-to-sample tasks using
low-resolution facial images depicted as arrays of
phosphenes. Initially, our focus lies on evaluating ML
models' performance in mimicking human facial rec-
ognition abilities using a dataset of 3,600 phos-
phene-rendered facial images. Remarkably, our
top-performing model closely mirrors the behavioral
patterns observed in humans tested with a subset of
the phosphene facial images. Subsequently, we devel-
op linear and nonlinear approximations to predict hu-
man recognition performance for untested phosphene
images, thus optimizing the process and reducing the

necessity for additional psychophysical trials. Further-

22

more, detailed image-level analyses shed light on the
challenges encountered by ML models in identifying
specific facial categories across varying resolution lev-
els, suggesting the need for further refinement to at-
tain human-equivalent performance across all facial
types and eventually supersede psychophysical testing
in the field of artificial vision. Through Grad-CAM and
human eye-tracking analyses, we pinpoint facial con-
tour lines as pivotal features crucial for both models
and humans in recognizing faces within low-reso-
lution phosphene images. Our study underscores the
transformative potential of ML in reshaping the re-
search landscape of visual prosthetics, facilitating ac-
celerated progress in prosthetic technology.

Acknowledgments: This work was supported in part
by the Korea Institute of Science and Technology
(KIST) under Grants 2E33231 and 2E32921, in part by
the National Research Foundation (NRF) of Korea
funded by the Ministry of Science and ICT under
Grants 2020R1C1C1006065, 2022M3E5E8017395, and
RS-2023-00302397.
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Understanding pain: Insights from the

brain and artificial intelligence

LI W - Gt S2EH0| 0 LIAESS

One in five adults suffers from chronic pain yet we
do not fully grasp the mechanisms of pain. Despite 30
years of using fMRI to study pain, good brain models
of pain are still lacking. In this talk, I will present our

previous findings from 10 years of modeling pain in
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the brain, highlighting the limitations of current
models. Then, I will introduce new research directions
emerging from recent advances in personalized brain
mapping and artificial intelligence, with the aim of

developing better neurocomputational models of pain

to help individuals suffering from chronic pain.

[16:30-17:50]
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A Journey through Memory
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As a cognitive neuroscientist, the primary focus of
my research lies in investigating how memories are
stored, reorganized, and retrieved in the brain. During
my graduate education, my primary question was to
understand how consolidated long-term memory
traces become labile and reorganized. Using animal
models, I provided the first evidence that consolidated
memory traces become labile via a protein degrada-
tion process in the hippocampus after memory re-
trieval, and the post-retrieval labile state is critical for
memory reorganization. Based on these neuro-
biological research experiences, I wanted to extend
this fundamental biological knowledge to memory
paradigms that are closer to real-world human
experience. [ joined in a human cognitive neuro-
science laboratory as a postdoctoral researcher.
During this period, my research focused on the sim-
ilarities and differences in brain representation be-
tween memory retrieval and actual experiences, and
goal-dependent nature of working memory main-
tenance. Since 2015, I have held independent pro-
fessorial positions, where I have expanded my re-
search on memory. This includes investigating the im-
pact of human emotions on memory, the storage of

habitual memories, memory reorganization and false
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memory processes.

Reflecting on the significance of memories in shap-
ing individual identity, I am motivated to explore the
intricacies of memory through my research. In this
talk, I aim to share my journey in memory research
and discuss career development in academia, covering
aspects of research experience, skill and professional

development, and long-term planning.
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How did an electrical engineer come
to study the human brain
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Sleep cycle prediction system
through sleeping sound data
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Increasing public awareness regarding the im-
portance of sleep is driving the need for automated
sleep staging systems to replace traditional, labor-in-
tensive sleep staging processes. This has led to the de-
velopment of sleep staging algorithms that use physio-
logical signals collected through wearable devices, en-
abling users to monitor sleep at home by themselves.
However, the discomfort of having a device attached
to one’s body while asleep can soon become a frus-
trating factor for daily monitoring. Therefore in this
paper, we propose a system to perform a fully remote
automatic sleep stage classification based on breathing
sounds. For the training set, respiratory sounds were
collected during multiple sleep sessions (n = 10) from
5 young adults along with their overnight EEG
recordings. EEG data was measured by the 4-channel
wearable Muse S (gen 2) headband. Respiratory
sounds were then split into different-sized patches
and fed into transformer encoders, while EEG epochs
were scored according to another brain activity scor-

ing model. Using this dataset, we propose to develop
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a Bi-directional Long Short-Term Memory based mod-
el that will ultimately classify user’s sleep state into
five different stages; wake, REM, N1, N2, or N3. Our
model will be applicable for in-home clinical practi-
ces and can be a useful tool for further research areas
such as TMR (targeted memory reactivation) studies or

PLAS (phase-locked auditory stimulation) studies.
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This study evaluates the safety and efficacy of the
cognitive therapy software NDTx-01, compared to a
waitlist control group, in improving social communi-
cation and interaction among adolescents diagnosed
with social communication disorder (SCD) or ASD.

Methods Adolescents aged 10 to 18 years, diagnosed
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with SCD or ASD based on the DSM-5 criteria, partici-
pated in the study. The participants were randomly
assigned to the NDTx-01 (N = 19) or waitlist control
(N = 19) group. NDTx-01 is a data-based, personal-
ized digital therapeutic designed to enhance social
communication and interaction. It was developed ac-
cording to the guidelines provided by the CDC in the
United States and the National Institute for Health and
Care Excellence (NICE) in the United Kingdom.
NDTx-01 was administered for about 10 minutes/day,
5 days/week, for 6 weeks. All participants and their
parents completed both self-report and ex-
pert-evaluated scales, including, among others, the
Korean Vineland Adaptive Behavior Scale 2nd Edition
(K-VABS-ID), Social Responsiveness Scale 2nd Edition
(SRS-2), Korean Stress Index for Parents of Adolescents
(K-SIPA), Clinical Global Impressions-Severity (CGI-S),
and Improvement (CGI-I). Results This study included
a total of 38 participants (mean [SD] age, 13.50 [2.23]
years; 34 male participants [89.47%]). To verify the
difference between the NDTx-01 group and the wait-
list control group, a Wilcoxon rank sum test was
performed. We found significant differences in the
following domains: Daily Living Skills (4.9, p < .001),
Socialization (5.63, p < .05), and Adaptive Behavior
Index (4.68, p < .05) of the K-VABS-II; Restricted
Interests and Repetitive Behavior (-2.18, p < .05) of
the SRS-2; Moodiness/Emotional Lability (-6.23, p <
.05), Social Isolation/Withdrawal (-7.95, p < .01),
Adolescent Domain (-6.72, p < .01), Total Parenting
Stress (-5.33, p < .05) of the K-SIPA, and in CGI-I
(-0.53, p < .05). Conclusions NDTx-01 group demon-
strated significant improvement in subdomains of
K-VABS-II, SRS-2, K-SIPA, and CGI-I compared to
the control group. Therefore, NDTx-01 could be an
easily accessible therapeutic option for adolescents
having difficulty in social relationships. However, no

significant differences were found in some sub-
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domains, possibly due to a small sample size. Future

studies should recruit more participants.
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[TALK1]

Modeling, evaluating obesity and
binge—eating (&4Z) in non-human primates

1,2 542 = 2 =42 2 2 1,2
M2, O3, AP, BgeR, H242, HA, BIRp' 2,

y
2 =2 = 2 =2 YR —
BT, Gt S, HSS7, O|FH, F[HTI™*

S THSLL QIR DS, BT Sleel 2R

*WAKKE: hjchoimd@gmail.com

BACKGROUND: Intermittent access to palatable
food has been suggested to induce a binge-eating dis-
ease model, whereas ad libitum access to palatable
food induce an obese disease model without
binge-eating, in rodents. The present study aimed to

develop and validate the protocol for obese and

P
o2t

N
re

2024 st=QIx[atets| shatyE]

Mind, Brain sData

binge-eating disease models in nonhuman primates.

METHODS: One cynomolgus monkey has access to
chocolate bars for 30minutes on two days every week.
The other two cynomolgus monkeys have access to
ad libitum high-fat-high-sucrose diets. For the first 3
months, two ad-libitum monkeys were given custom-
ized high-fat-high-sucrose diets with two different
flavors. Afterward, cafeteria diets, which were se-
lected based on subjects’ food preferences, were add-
ed to the customized diets for the remainder of the
experimental period. The monkey, with an inter-
mittent chocolate bar diet, was video recorded every
other month on the day of the diet, and the amount
she ate in 30 minutes was counted. The binge-eating
phenotype was validated by the chocolate sugar-cov-
ered candy (M&M’s®) eating test. We measured the
serum levels of metabolic factors (i.e. insulin, glucose,
triglyceride, total cholesterol, alkaline phosphatase),
body weight, BMI, WHI, and adipose tissue density.

RESULTS: The ad libitum access group did not show
a binge-eating phenotype by the video analysis of the
eating test. However, the intermittent access group
showed a consistent binge-eating phenotype through-
out the study period. The intermittent access group
showed a marked increase in chocolate bars intake
from 495 kcal to 2752 kcal. For all monkeys, the BMI
has increased up to 28~36.2, WHI up to 53.1~65.9,
and 120%~963% fat volume during the 9-month peri-
od of the designated diets.

CONCLUSION: We developed a protocol for a
binge-eating model for non-human primate monkeys
using intermittent access protocol of highly palatable
food, which showed a markedly increased binge-eat-
ing phenotype compared to an obesity model with ad
libitum access. These protocols provide novel pre-
clinical disease models for basic mechanistic studies

and pharmaceutical and medical device development.”

29



2024 SH20IX[IA33| SHATHS]
Mind, Brain aData

[TALK2]

A Pilot Study of Perceived Al
Consciousness : A Quantitative
Exploration of Human Responses

Bongsu Kang', Tae-Rim Yun', Jundong Kim',
Hyojin Bae?*, Chang—Eop Kim'*
'Department of Physiology, College of Korean Medicine,

Gachon University, 2Department of Physiology, College of
Medicine, Seoul National University

¥ MR eopchang@gachon.ac.kr

This study investigates the characteristics that con-
tribute to the perception of artificial intelligence (AI)
consciousness in human-Al interactions. Drawing
from a pilot survey of 29 participants and their assess-
ments of 39 human-Al exchanges, we quantitatively
analyzed the influence of nine key features on the
Perceived Artificial Consciousness Index (PACI).
Utilizing multiple linear regression models and hier-
archical clustering, we identified significant features
that lead humans to ascribe consciousness to Al, such
as 'Metacognitive Self-reflection’ and 'Emotionality’,
while also revealing individual differences in sensi-
tivity to these features. Our study provides preliminary
insights into the factors that might shape perceptions
of Al consciousness and highlights the variability in
human responses to Al. These insights are important
for improving Al design and deepening our under-

standing of consciousness.

30

[TALK3]
ximx 25 44 BCI 7|t
SH| Q122 22 AAIZHH0] 712 THeL:

HAL HONI Y TS G

—_

| BB RS}, 251 A OITLe HI0| QLA QKLHIE,
SRitatm AAT, “neiratn QIEKlsE;

* WAL hk@kist.re.kr

thaFst Aol A Brain-Computer Interface (BCDE: ©]
B3t G A 71500 ofEgol e Aolgle BEst
7] S1et 9F 71715 Alefstalzt stisyct. 531, 284
o AX SRl AAIoZH O 772 AHolsk=
Motor ImageryMD) BCl= &4 253 ZA3sto], 29
A 59 Ao R £o] AFEA &2 spinal cord in-
jury(SCD SRl A APTA2l B3 B29| 7FsAdS Ko
= 7 AUt @7 3R] 954 235 MI-BCIE
ARGl AAZEO = Alofdte], SCI gofiglo] 71H H H3
<= 7%k 7he e AR A A9 Yisyth &
Aol A= SCI ofele] CNN 2d 7|5 MI-BCIE &3t
SHA] 9= 2RO AARE Ao 7He S B7FIEU
1789] SCI o A(4d; Lol 47)0] Ahedsto] TR0 W2
= 599 94 =X o EHd MI-BCI &4
ol 7|Hto = 37| oj&F BRZ AARE Aofsl: Ad
sty 3709 Classe SHA| &3t waso] )
‘Gait’, ‘Sit’, 1L ol AR 3FA] Y= Rest’ Class® +
A= AsUch 852 $I3t EEG Datat= 32 Channel®] 7
Class® 5%9] EEG Data® FAER 2™, ZF Class® 30
Trialo]P5Uch 72 93 CNN 292 ofz] MI-BCI
E5 S 2(EEGNet, ShallowConvNet, DeepConvNet)<
B2 djX]Shk= Multi-Model CNNS AMSSHASUTE 11
21, o5 2RSS AAEO R Alofshr| flsiAl AREA}
E3t Classe] MI-BCIZ 33l +12, oAy} o2
7t 99 -

i

H

[o

rrow

st
@)

o] & Buffers
= A2EE AAsAEUT ol
2E Alolg 7] $14, SCT Aol

A2 ofZF 22X Alofdto] 7[H-RaP-H4 o2 ofofx|

10715 A4 g

B
ozt

>
re



+ TaskE TH=S QUGS

Al Ad} SCI Aol QAR TaskE False Positive
Rate(FPR) 83.1% ~¥3tHs5Utt. 42| g@ofo] gt
FPRL Stand-up: 80%, Gait: 92.3%, Stand-up: 79.4%2
2 IS Y

ol2|dt Arh= SCI Aofigle] 954 25 At R
Alofst=tl, Hed 7 25 Bds AR MI-BCIZF 4

Y
83 154S nolEgs

[TALKA4]

Transcutaneous Auricular Vagus Nerve
Stimulation Modulates Verbal and
Visuo—spatial Working Memory Challenges
in Age—Related Hearing Loss

Junyoung Shin', Shinhee Noh', Jimin Park’,
Sang Beom Jun?3*#, Jee Eun Sung'*

'Department of Communication Disorders, Ewha
Womans University, Seoul, South Korea, 2Department of
Electronic and Electrical Engineering, Ewha \WWomans
University, Seoul, South Korea, °Department of Brain and
Cognitive Sciences, Ewha Womans University, Seoul,
South Korea, “Graduate Program in Smart Factory, Ewha
Womans University, Seoul, South Korea

* WKL jeesung@ewha.ac.kr

Objectives: The growing body of evidence linking
age-related hearing loss (ARHL) to an increased risk
of dementia underscores the urgency for early inter-
vention strategies to prevent cognitive deterioration.
Recent research on transcutaneous auricular vagus
nerve stimulation (taVNS) suggests its potential to in-
fluence cognitive functions and brain adaptability by
altering brain activity. This study is the first to apply
taVNS to ARHL to explore its efficacy in enhancing
working memory (WM) among older adults with
ARHL. Methods: Fifty-six participants over the age of
60, including 20 with hearing loss (HL) and 36 with

normal hearing (NH), were recruited. Their WM was
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assessed using visual n-back tasks, which varied by
domain (verbal vs. visuo-spatial) and complexity
(1-back vs. 2-back). Through a two-session, with-
in-subjects, randomized crossover, and single-blind
sham-controlled framework, participants received
taVNS and sham stimulations on one ear, with ses-
sions one week apart. Results: The findings revealed
that the HL group showed significantly weaker per-
formance than the NH group, particularly on more
complex 2-back tasks (p €.001). Remarkably, within
the HL group, taVNS stimulation led to significant im-
provements across all WM tasks and complexities
compared to the sham condition (p=.016), highlighting
the clinical benefits of taVNS in enhancing WM func-
tion specifically in the hearing-impaired, a group at
increased risk for dementia, by addressing the sig-
nificant drop in WM capacity linked to hearing loss.
Conclusion: Our findings demonstrate that taVNS sig-
nificantly enhances WM in older adults with ARHL,
across both verbal and visuo-spatial domains. This
suggests that taVNS represents a promising, targeted
non-invasive intervention strategy to combat cognitive
decline in individuals at higher risk for dementia due

to hearing impairment.
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The dynamics of multimodal cue usage
in beginning dyadic conversational
exchanges across child development

Jun Ho Chai', Barbara Zapior?, Eon-Suk Ko'*

'Chosun University, 2University of East Anglia

* WA eonsukko@chosun.ac.kr

Mothers and children initiate conversational ex-
changes through both verbal and non-verbal cues. We
hypothesize that the use of non-verbal cues decreases
with child age and language development, indicating
a transition to verbal communication as language skills
mature. Additionally, we investigate whether con-
versation initiators display a higher proportion of cues
compared to respondents.

We analyze audio-visual recordings from the Ko
Corpus of Korean mother-child interaction, compris-
ing dyads at various developmental stages (N = 35, M
= 16.19, SD = 8.18, range = 6 - 30). Multimodal cues
preceding conversational blocks are identified, along
with children's language outcomes using the SELSI
inventory.

We employed a binomial linear mixed model to an-
alyze the effects of block type, age, and gender on cue
presence, with the random intercept for nested con-
versational blocks within subjects. We found a sig-
nificant three-way interaction (p = .019), indicating an
age-related decrease in cue usage, except in child-ini-
tiated blocks by boys. In the second model, the
two-way interaction between block type and cue ac-
tor (p &lt; .001) revealed that children and mother
tend to produce more cues in own-initiated blocks
than in those initiated by the other (ps &lIt; .001).
When investigating the relationship between non-ver-
bal cues and language outcome, we found a sig-

nificant interaction between SELSI receptive vocabu-
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lary score, block type and cue actor (p = .035). The
results indicate a negative relationship between chil-
dren’s cues and SELSI comprehension in mother-ini-
tiated blocks but weaker trend in child-initiated
blocks; whereas mothers tend to produce less non-
verbal cues in both block types.

Findings reveal a shift from non-verbal initiation of
conversation to verbal as children age, with initiator
roles influencing the use of multimodal cues. The de-
cline in non-verbal cues within mother-initiated in-
teractions as children&#039;s vocabulary grows signi-
fies a key developmental shift towards favoring verbal
over non-verbal communication for initiating ex-

changes, mirroring the observed age-related variation.

P
o2t

N
re

2024 st=QIx[atets| shatyE]

Mind, Brain sData

33






2024 st=20IX|2f5t3| Sh=Ti3
Mind, Brain & Data

Connecting Humans & Al







HEAE YH (535241

[12:10-13:00]

[P1]
Oj2fe] Zizt MEE oASIEE ST MEuS
5t Li0e) SEY B
2ot 28>
| MRG0 QK Iz Eat}, 2KAIST H0|Q 25t

*WAKRE yulkang@kaist.ac.kr

AR71E & o= 27 HollA] A9 X E Tl
t L 550] (GPS 59| Aul7} gl
3 ZHA o7 WAT 4= gl hidden stateo] ==, 1917
A1ZF 9 self-motion?} o] BLPAsI 3 419 ARE
FE f5sfof gtk A At Aol W2, A9 914
utobS QA= 4523t hidden stateol] i3t B2HAIA o]
aE|ofof sh, AAR AlEEC] 43| S EEAAES
1B}, o] Mol A place/grid fieldsoll oJ3f %E}
= Zo| WAk deu, HolA] oA ofdt
F4(hidden stateol] et 29 F4)o] T5HER

_I}Lr
>

Al7gwgo]

él‘i% Cﬁl’k}ﬁ}EE i?iﬂtﬂ ol #AS P Hrt
A& Heldt,

Attt o] AT 7R olA A%
gAste], 5 A AlZE 9 self-motion ATE Hrof oF
OS2 A7} AFF JSstes st o]t &1
o]%, o] ®H9] hidden stater= AR&FEPEE 7|9t hand-
crafted ideal observer?] $1X]o] "4153 0SS ARtE

AL Kol 2= 9t} o

=A%) Wl ofg} 24 X9 59]’*,—-_-]61 e

rr

[e]
2a)
o,
o
rlo
rE
ofk
i,
to

M
ro

me kU

o
-
tN

|
i

| Sloid 4= %

o ideal observer?] beliefe} G-2J3t AHAAES K
t}, E3} ideal observer?] B3HAAT} up A2, o] &
Ao RHE faget 7MY 7k B o R R E 74'1] of of
] e}

ok

EEAAE A7t Hojell wet S7FskA. ol
7+9] homing behavior7} B 717he A& o 0&3

ZA&o] glew, place field?] 2717} HogRE Q] Ag] ]
vtk A7 Adkeks GX)gck $H, AAE 25t

;

[ ZAE]

2024 st=3Q1X|afst3| sk=H3)
Mind, Brain sData

oA A= Fejo 2o FARS ol RE9
#4o] ideal observer?] $1X]of o
oF o3t A AE Helom,
olB et X3ttt W, 1]
Al EA A Al A AdsteE
F-z9] »dll jdeal observer?] U
ZokGinh o] Ay ¢ =

53t 740] oA FE4 4 Sksdte 714 2

% qes AR,

<
g,
n[o

-5 9 place field
% 7]xgaoL A1) q]

é”.:
LJE

1:1#0
it
>4
.
bl
<l
o
ok
ot
)

o}l o Eg @-71— A= oﬂks}:i

[P2]
aist AEfE 4E SV 13t B £ 24 7[HH Zolst
k|-AHFE QUEHO|A SAAF AJAH] JHL
(Development of a Robust BCl Communication
System Based on Neural Synchrony
Representations Underlying Speech Processing)
OFM', OJAfS#, OlAdgt'*

| DB QIERIS L, 2Nt sl s

*WAKRE sw.lee@korea.ac.kr

2 A= H-AFH dEH o] ABrain-computer in-
terface, BCD) #&che] WellA 7154 A2 4(Functional
connectivity) E4 Ed-E gAFolo] ¥ AT 7|9k 7ol
AR AAEFE Hdske b F8S ok @A7HA
= (Electroencephalograpy, EEG) A1%.9] ¥ A5 of
FrE Qe B-53 BCIY] Al 3 A= W,
7} sfejohelof g 53k A o] EAS Holor & 2
do] ZFxH L itk 53] Akghe] A ZK(Perceived speech),
9l A KImagined speech), 3} £AH)(Whispered
speech) ¥ AlA] @K Overt speech) F2th¢lo] Ful4
9 ] FoAof mt ofwet Zpe]7h l=Alof 75t Ao
Z2Ao|t}, B Ao A A7t Aol 10Ho] A3 &
o2 AZH W FoolA AE Aol ik
A7HAEoA I35} Aol Se AXES AL, o] A

AIE whet 20719] ©olE thedt ot 27401]*1 i
HAE 2YSHA StGiTt. HollAl ddof

0 ‘_| =
2 Besie) w=UA debe i3 Fol, 9 SYnes

£
o

37



2024 SH20IX[IA33| SHATHS]
Mind, Brain aData

Hal7] ofths AolA E8dto, o
om SJ8, wto] 7)%5A Az
L ZE gl o)Ak 2|9 X]4 HF
ojof] w} 21 FAR
St Ay, Wk 279 E}E}H SAHCR Fojulet
UERETHp <0.05). W3S A4 o Ale Fuige oy
(4-8 HzolM= 24 ol =74 uehiAe, dut
(30-120 Hz) Fub djqollAl= Q274 ghol WA yehdt
Thp 0.05). Write} et Sarel 2 A ] At fS
SARBHA et A7k AT wma Rk e
AS B AL, W7} W} WS40 Aok o]
QolA] GARY 417 328 AXTHE 2L hAldt, wh,
oL A 22014 Yehd e FElo] ke ek AT
o AA| W} 41T e K9] oo} LA
A3 4= Q1SS AARRITE ol2fet Atol= W3te] AA|
Py ojRe} PAglo] W7k T o] wale HejsieA]

et 278 AKste, 3302 Wl 31 BC ©

a5 Al2"o dse TS & Atk

U‘E
2o oox
o o o

>~ r.{m

b o o

il
>,

—>$
°
=

J

_témmru&&

[P3]
QIXIxfo} &=0I e XHEY BT FYHX= xl=
S 582 71X 2HAURE VIt Xz 21}
A 0E R Xz 27| S U

SIUTHSl T SSRGS, SlThstin Hlo| QM2 S5}t

*¥WAKRE ich@hanyang.ac.kr

Transcranial photobiomodulation (tPBM) has shown
a potential to improve cognitive function in older
adults with cognitive decline. However, a part of old
adults with cognitive decline has demonstrated a lack
of response to tPBM. In this regard, to enhance the
cost-effectiveness of tPBM therapy, we attempted to
screen out tPBM non-responders in the early stage by
using graph-theoretical indices of the prefrontal func-

tional connectivity network estimated with functional

38

near-infrared spectroscopy (fNIRS) signals simulta-
neously recorded during tPBM. Fifteen trials were ran-
domly selected among the initial 20 sessions of tPBM
therapy. Subsequently, the 15 trials were sequentially
allocated to five blocks. Each graph-theoretical index
of each block was analyzed by Pearson correlation co-
efficient with the global cognitive score (GCS). The ef-
ficiency change of total-hemoglobin change (AHbT) in
block 3 demonstrated a significant negative correla-
tion with the GCS (R? = 0.1596, p <0.05). In block 4,
significant negative correlations were observed in the
clustering coefficient changes of oxy-hemoglobin
(AHbO) and deoxy-hemoglobin (AHbR) (R* = 0.2286,
and R* = 0.1944, respectively, p <0.01 and p <0.05,
respectively). Additionally, in block 5, significant neg-
ative correlations were shown in the clustering co-
efficient changes of AHbO and AHbR and the degree
change of AHPO (R* = 0.1737, R* = 0.1667, and R?
= 0.1625, respectively, p <0.05, p <0.05, and p <0.05,
respectively). With these graph-theoretical indices, a
simple linear regression was performed for the early
prediction of non-responders. Those whose regression
results were below the threshold of 0.35 were classi-
fied as non-responders of tPBM therapy. Consequently,
11 out of 13 participants postulated as non-res-
ponders revealed to be non-responders after the tPBM

sessions.
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This study aims to investigate the influence of pack-
age design on individuals with different purchase in-
tentions, as indicated by fNIRS signals. Prefrontal
fNIRS signals were collected from 15 participants en-

gaged in a virtual purchasing task under two con-
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ditions: Condition 1 (C1), where participants were
purchasing gifts for others, and Condition 2 (C2),
where purchases were for themselves. The experi-
ment results revealed more pronounced brain activa-
tions in the prefrontal cortex under condition 1, com-
pared to 2, as determined by paired t-tests, specifi-
cally on Chs. 5, 7, and 11 (p <0.05). This observation
suggests that purchasing gifts for others involves a
higher level of cognitive deliberation, as reflected in

increased prefrontal brain activations.
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[P9]
Effect of rTMS on improvement of

balance and muscle control in patients
with Cerebellar ataxia

Sumin Lee', Eunhee Park?, YongJeon Cheong',
Seonkyoung Lee', Ji Hyeong Ro', Jihyun Bae',
Yujin Lim®, Susanna Lee®, Chanju Kim®, Howon Lee*

"Cognitive Science Research Group, Korea Brain Research
Institute, 2Psychology Department, Yeungnam University

*WAKRE minyoung@kbri.re.kr

Cerebellar ataxia (CA) involves dysfunction in bal-
ance and motor coordination. Previous studies dem-
onstrated that repetitive transcranial magnetic stim-
ulation (rTMS) can enhance motor function in in-
dividuals with motor impairments. This study inves-
tigates whether rTMS treatment would improve bal-
ance and muscle control in CA patients.

10 CA patients (male=4, age=57.5%£9.01) partici-
pated in this study and successfully completed 5 con-
secutive days of treatment on cerebellar tonsil with a
frequency of 50Hz. We assessed the patients’ balance
and muscle control using the balance platform (BT4)
and surface-electromyography (sEMG). First, the pa-
tients were asked to keep balance for 30 seconds in
both eye-open and eye-closed conditions during BT4
test. From this test, we calculated the displacement in
the X (AX), Y (AY) and the Euclidean distance (AD)
on a two-dimensional plane for every 10ms. Second,
we measured the maximum voluntary contraction
(MVC) of lateral and medial sides of bilateral gastro-

cnemius muscles for 3s and calculated the root mean
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square (RMS). Data were acquired in pre-treatment
and post-treatment. A Wilcoxon signed-rank test and
Cohen’s D were performed to compare the pre- and
post-treatment data.

In terms of balance control, significant differences
were found between pre- and post-treatment in mean
AY(p<0.01, d=0.36), STD AY(p<0.005, d=0.42), max A
D(p<0.01, d=0.56), and STD AD(p<0.005, d=0.44) for
the eyes-open condition, and max AX(p<0.05,
d=0.49), mean AX(p<0.05, d=0.39), STD AX(p<0.019,
d=0.46) and C90 X(x-coordinate position of the center
of the 90% confidence ellipse; p<0.05, d=0.93) for
eyes-closed condition. Regarding muscle control, the
area under the RMS envelope(p<0.05, d=-0.26) and
mean RMS value(p<0.05, d=-0.26) of the left lateral
gastrocnemius muscle were significantly different.

This study indicates that the treatment can improve
motor function in CA patients. Specifically, this treat-
ment may have a positive effect on muscle activity
which may be further helpful to maintain the static

balance in CA patients.
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Refining Infant Word Recognition
Analysis through Optimised Gaze
Feature Selection based on Random

Forest
Jun Ho Chai', ZI8IXP, Moig? 0|g7[?, 1ot
(£ CrmARIC = o]

SINTLN

*WAIKRE eonsuk@gmail.com

Infant eye-tracking is pivotal for understanding ear-
ly cognitive and linguistic development. Studies ana-
lyze infants' gaze patterns to deduce their processing
of visual and auditory stimuli. However, challenges
such as infants' fluctuating attention spans, tendencies
to bias towards certain stimuli, data noise and the in-
herent difficulty in interpreting subtle gaze behaviors
persist. We employ the Random Forest (RF) algorithm,
incorporating a comprehensive range of gaze features
to train the RF model and focusing on both raw and
adjusted proportions of gaze directed toward the tar-
get during specific test windows. We trained RF using
gaze features, including raw and adjusted gaze pro-
portions towards the target, and differences in gaze
proportions post-stimulus compared to the baseline.
We validated the model's performance through a
Leave-One-Out process, a method particularly suited
to a limited dataset. It was trained using a dataset de-
rived from eye-tracking tests on 25 Korean infants,

approximately 14 months old, and achieved an accu-
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racy of 88.45%, significantly surpassing traditional lin-
ear regression models in internal validations. Further
evaluations indicate that a specific range of 4 to 5
gaze features is optimal for predicting infant word
recognition, with a plateau in correlation scores in-
dicating that additional features do not improve
correlation. The RF algorithm demonstrated a notable
improvement in correlation with parental reports on
the MacArthur-Bates Communicative Development
Inventories from rule-based approach (’s between
.47 and .52) to reach a correlation of .65 when a spe-
cific combination of gaze features was used. The in-
tegration of RF into infant eye-tracking studies offers
a more robust, nuanced way of interpreting complex
gaze data. Future research will expand gaze data
quantification methods and dataset diversity, and de-
velop advanced Al models like neural networks. This
approach will enhance feature selection, with sub-
sequent efforts focused on evaluating the tool's reli-
ability and validity in assessing cognitive and linguistic

development.
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Effects of Parenting Relationship on
Interpersonal Neural Synchronization
between Mother and Child
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*WAKIKE minyoung@kbri.re.kr

In the field of social neuroscience, interpersonal
neural synchronization (INS) has been regarded as a
powerful marker of social relationship. Considering
INS indicates successful social relationship, it became
one of primary research interests among devel-

opmental scientists investigating parenting relation-
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ship. This study aimed to examine how INS relates to
parenting relationship between mother and child.

This study includes 122 pairs of mothers (mean age
[SDI = 40.87 [2.91] years old) and children (76 male,
mean age [SD] = 9.3 [1.63] years old). To assess the
parenting relationship, consisting of attachment and
communication, the mother participants completed a
Korea-Parenting Relationship Questionnaire. All par-
ticipants underwent resting state functional magnetic
resonance imaging (rsfMRI) using by 3T scanner. The
acquired rsfMRI data was pre-processed via CONN
toolbox. First, we computed INS by timeseries rsfMRI
data for 116 parcellated regions of interest (ROISs)
based on the Automated Anatomical Labeling atlas us-
ing the funpsy toolbox implemented in MATLAB.
Second, we calculated the Pearson correlation of the
INS values from mother and paired child. Third, the
ROIs were sorted based on frequency level for pairs
at a significance level of @=0.01. Then, we conducted
the Pearson correlation analysis between profile items
and INS coefficients using SPSS.

There were positive correlations between "Attachment”
and INS in the left superior occipital gyrus (r=0.454)
and the hippocampus (r=0.543) at a significance level
of @=0.01. Significant positive correlations were ob-
served between "Communication” and INS in the left
superior occipital gyrus (r=0.534) and the middle tem-
poral pole gyrus (r=0.469).

This study demonstrated that INS in brain regions
of the social brain network is associated with relation-
ship between mother and child. Our findings suggest
that, as an indicator of parenting relationship in a
mother-child dyad, INS in the temporal pole, hippo-
campus in addition to superior occipital gyrus may

contribute to attachment and communication.
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The Impact of Shared Knowledge
on Inter-Brain Synchrony Under
Communication Constraints:
An fNIRS Hyperscanning Study

*WAXRE yeaju394@yonsei.ac.kr

Understanding others' perspectives is challenging,

which makes social interaction complex and
multifaceted. However, existing research has primarily
focused on individual behaviors within controlled lab-
oratory settings. To overcome this limitation, hyper-
scanning methods have been developed to measure
neural signal coherence during real-time interactions
among multiple participants. Several studies have
demonstrated that individuals exhibit higher levels of
inter-brain synchrony (IBS) during cooperative inter-
actions compared to competitive or non-interaction
scenarios. Notably, ‘theory of mind’, the ability to un-
derstand others’ mental states, is closely linked to IBS.
For instance, autistic children, with diminished theory
of mind abilities, exhibit lower IBS levels during social
interactions compared to neurotypical peers, along
with less efficient speech production over time during
referential communication tasks. This study suggests
that the limited IBS during referential communication
arises from restricted shared knowledge between the
communicators. Employing a referential communica-

tion task paradigm, participants engaged in a word-
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guessing game where communication pathways were
restricted to specific words. Concurrently, functional
near-infrared spectroscopy (fNIRS) brain imaging data
was collected to measure the real-time activation pat-
terns of the prefrontal cortex in both participants. The
findings suggest that when shared knowledge was
formed through linguistic communication, there was
a notable increase in the degree of IBS between
individuals. Both behavioral performance on the task
(i.e., error rate, reaction time) and prefrontal neural
hemodynamics data indicate that the individuals
struggle to produce meaningful speech under commu-
nication constraints, yet they partially overcome this
limitation when allowed to develop their own shared
knowledge. These results offer insights into the neural
mechanisms underlying social interaction dynamics,
particularly in cooperative communication contexts

under constraints.
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Associations between processing
speed in children with brain structure

Yujin Lim"?, YongJeon Cheong', Seonkyoung Lee',
Ji Hyeong Ro', Jihyun Bae', Susanna Lee'?,
Chanju Kim'?, Minyoung Jung'

'Cognitive Science Research Group, Korea Brain Research

Institute, 2 Psychology Department, Yeungnam University

*WAKIKE minyoung@kbri.re.kr

As an important cognitive resource, processing
speed (PS) is characterized by the fluency with which
the brain receives, understands, and responds to
information. Accordingly, it is known that multiple
brain regions involve PS. This study investigates asso-
ciations between PS and brain regions.

This study includes 190 children (107 boys, mean
[SD] age = 8.98 [1.68] years old). To assess PS of chil-
dren, we used 1) Processing Speed Index (PSD of
WISC subscale, PS (mean [SD] score = 103.15 [11.987])
and 2) Gamified PS assessment (GPSA) that we

[ZAH]
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developed. We collected participants’ reaction time
(mean [SD] = 1.903 [0.423]s) and accuracy (mean [SD]
= 66.1 [6.11%) in response to the GPSA. Neuroanatom-
ical MRI data were collected using 3T MR scanner and
preprocessed by FreeSurfer.

We conducted partial correlation analyses 1) be-
tween PSI and cortical thickness (CT) of 68 brain re-
gions as well as 2) between PSI and behavior response
of GPAS. We performed a structural equation model
to identify statistical causality between PSI, behavior
response of GPSA, and CT. The significance level was
set at @<0.005.

Significant correlations were found between PSI and
CT in six regions (r=-0.224 for left cuneus, r=-0.277
for left Heschl’s gyrus, r=-0.203 for left inferior frontal
gyrus, r=-0.204 for left superior frontal gyrus, r=-0.207
for right cuneus, r=-0.205 for right lingual gyrus). PSI
has significant correlations with reaction time
(r=-0.299) and accuracy (r=0.263). The final estimated
model had a good fit (TLI=0.948, CFI=0.960,
RMSEA=0.059). CT predicted PSI (8=-0.126, p=0.082)
which subsequently showed a direct effect on a latent
variable game (8=0.24, p=0.01).

These findings suggest that children’s PS is asso-
ciated with the multisensory integration brain struc-

tures involved in higher-order sensory processing.

[P22]

Adaptation of Parenting Brain to Parenting
Stress, Depression, and Anxiety

YongJeon Cheong', Seonkyoung Lee',

Ji Hyeong Ro', Jihyun Bae', Yujin Lim'?,
Susanna Lee'?, Chanju Kim'?, Minyoung Jung'*
'Cognitive Science Research Group, Korea Brain Research
Institute, 2Psychology Department, Yeungnam University

*¥WAKRE minyoung@kbri.re.kr
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The brain directs adaptation to stressor. Parenting
stress is perceived pain where childrearing is stressor.
Maladaptation to parenting stress may compromise
depression and anxiety. This study investigated struc-
tural and functional adaptation of the parenting brain
to parenting stress in association depression and
anxiety.

175 primary caregivers of children participated in
this study (8 males; mean [SD] age=40.85[3.12] years
old). The participants completed Parenting Stress
Index (PSD) and Beck Depression/Anxiety Inventory
(BDI/BAI). Using 3T scanner, structural and rest-
ing-state functional MRI scanning of the participants
were collected and preprocessed with FreeSurfer and
CONN. First, we performed partial correlation analy-
ses between the psychological and brain structural
measurements. Second, we computed resting state
functional connectivity (RSFC) values between two
predefined seed regions (left entorhinal cortex
(L.ERQ); right fusiform gyrus (R.FFG)) and each voxel
of the whole brain to identify effects of the psycho-
logical factors. Third, we conducted structural equa-
tion modelling analysis to identify statistical causality
between psychological and brain factors.

Structurally, significant correlations were found be-
tween L.ERC and BDI (r=-0.251) as well as between
R.FFG and PSI subscales (r=-0.244 for ‘adaptability’,
r=-0.246 for child domain). The structure-based mod-
el showed a good fit (CFI= 0.992, TLI=0.980, RMSEA=
0.048) as well as indirect effect of parenting stress and
direct effect of BDI on brain structure.

Functionally, 6 RSFCs showed significant effects of
the psychological factors: 1) BAI-on-R.FFG-to-IFG
(T=-5.57, q<0.001) 2) BDI-on-R.FFG-to-IFG (T=-5.77,
g<0.001), 3) PSI ‘depression’-on-R.FFG-to-IFG (T=-6,
@<0.001) 4) BAI-on-L.ERC-to-R.IOC (T=5.22, g<0.001)
5) PSI ‘distractibility’-on-L.ERC-to-L.PaCG (T=5.03,
q<0.001) and 6) PSI ‘health’-on-L.ERC-to-R.COper
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(T=-5.44, q<0.001). We found a good fit for the func-
tion-based model (CFI= 0.968, TLI=0.962, RMSEA=
0.083). Parenting stress and anxiety had direct impacts
on RSFC with L.ERC seed whereas anxiety and de-
pression affected directly RSFCs with R.FFG seed.

This study demonstrated adaptation of parenting
brain to parenting stress, depression, and anxiety in

a complex way.
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Multiscale Entropy Analysis of
Resting—State Electroencephalography:
Differentiating Bipolar Disorder Type |
from Major Depressive Disorder and
Bipolar Il

¥WAKRE: his8678@gmail.com

Objective: High misdiagnosis rates between bipolar
disorder type 1 (BD-I) and both major depressive dis-
order (MDD) and bipolar disorder type II (BD-II) stem
from their symptom similarities. Therefore, developing
a reliable diagnostic tool is crucial to distinguishing
these disorders. Here, we conducted a multiscale en-
tropy (MSE) analysis of electroencephalography (EEG)
data to distinguish BD-I from MDD and BD-II using
machine learning techniques.

Methods: Resting-state EEG data were obtained
from 26 patients with BD-I, 16 patients with BD-II,
and 53 patients with MDD. The sample entropy-based
MSE was computed for the bilateral frontal, central,
and parietal regions. Based on simulations and the
knowledge of the reversal relationship between scale
factors and frequency components, we calculated the
“band- scale entropy” (theta, alpha, beta, and gamma
bands). Support vector machines (SVMs) were used for
classification based on band-scale entropy.

Results: Patients with BD-I showed significantly

higher MSE and band-scale entropy values corre-
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sponding to lower-frequency components than pa-
tients with MDD and BD-II across all regions. In addi-
tion, patients with BD-II exhibited MSE and band-
scale entropy values similar to those of patients with
MDD. Using three features from band-scale entropy,
the SVM classifier achieved an accuracy of 75.94% in
differentiating patients with BD-I from those with
MDD. Furthermore, in distinguishing BD-I from BD-II,
the SVM classifier achieved an accuracy of 71.42% us-
ing 12 features.

Conclusions: Our results demonstrated the feasi-
bility of MSE analysis for differentiating BD-I from
MDD and BD-II. Our findings suggest that entropy
analysis may be helpful in the differential diagnosis of
mood disorders.

Keywords: resting-state EEG, bipolar disorder, ma-
jor depressive disorder, multiscale entropy, machine

learning
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Sex difference in body images and their

association with psychological
problems in children

Susanna Lee'?, YongJeon Cheong',
Seonkyoung Lee', Ji Hyeong Ro', Jihyun Bae',
Yujin Lim"?, Chanju Kim'?, Minyoung Jung'*
'Cognitive Science Research Group, Korea Brain Research
Institute, 2Psychology Department, Yeungnam University

*WAKKE minyoung@kbri.re.kr

Due to increased exposure to social media that em-
phasizes appearance, children tend to be obsessed
with slim and skinny body. The discrepancy between
subjective perception of own body (SB) and wannabe
body (WB) would relate to psychological problems
(e.g., depression, eating disorder). Focusing sex differ-
ence, we explore difference in body images between
boys and girls and then investigate associations be-
tween the images and psychological problems.

A total of 249 children (boys=141; mean [SD]
age=8.19[1.64] years old) participated in this study.

Using ‘Body Image Scale’ that we developed on a
7-point Likert scale and inbody (InBody J50), we as-
sessed two body images, SB and WB, in addition to
Actual Body State (ABS). We assessed psychological

56

problems with Korean-Child Behavior Checklist.

We found no significant sex difference in SB
(mean([SD] = 2.95[1.23] for boys; 3.30[2.95] for girls),
ABS (4.51[1.98] for boys; 3.95[1.86] for girls). WB was
regardless of sex (2.46[0.95] for boys; 2.56[0.95] for
girls).

We found sex difference in discrepancy between
ABS and SB (t=4.890, p<.001): boys (1.55, SD=1.50)
showed larger discrepancy than girls (0.65, SD=1.37).

Regarding psychological problems, there were neg-
ative correlations of 'externalizing' (r= -0.142), 'ag-
gressive behavior' (r= -0.150), 'ADHD' (r= -0.139),
'PTSD' (r= -0.139), with 'WB' (ps<0.05). Boys showed
positive correlations between 'SB' and 'social relations'
in boys (r=0.275, p= 0.002), as well as between
'SB-WB' and 'social relations' (r= 0.274, p= 0.002).
Girls had a negative correlation between 'SB-WB' and
‘affective problems' (r= -0.271, p= 0.009). Further-
more, sex differences in the correlations between 1)
'SB' and 'social relations' (z=3.44), 2) between 'SB-WB'
and 'social relations' (z=3.34), and 3) between 'SB-WB'
and affective problems' (z=2.71) were significant
(ps<.01).

Overall, the children's wannabe body image was
mildly underweight. Importantly, children’s sex played
a key role in the association between perceptions of

body image and psychological problems.
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Parenting Practice Determines
Long—term Smartphone
Overdependence in Children:
A Longitudinal Investigation
X, a0, HiXE', AR, '
Isiei el QX BIITIE, “HH TSt Al2jatt

*WAIKKE minyoung@kbri.re.kr

Previous studies have demonstrated that parenting
practice is related to children’s smartphone over-
dependence (SO). However, it is unclear whether pa-
renting practice could alter SO in children, which re-
quires longitudinal investigation. This study aims to
investigate the long-term effects of parenting practice
on children’s SO.

72 children (39 boys, mean [SD] age at 2023 =
8.42[0.69] years old) and their caregivers participated
in this study in 2022 and 2023. We assessed parenting
practice using self-questionnaires, Parenting Relation-
ship Questionnaire (PRQ) and Parenting Stress Index
(PSD. We estimated the level of children’s SO via SO
questionnaire reported by caregivers and then calcu-
lated changes in SO (ASO) between 2022 and 2023.

First, we conducted partial correlation analyses be-
tween ASO and all subscales of PRQ and PSI, con-
trolling for sex and age (p.adj &lt; 0.05). Second, line-
ar regression analyses were performed to examine if
parenting practice predicts ASO.

We found significant correlations between ASO and
‘Involvement’ (r = -0.322) as well as between ASO
and ‘Health’ (r = 0.306). Regression analyses revealed
ASO was predicted by involvement (8 = -0.3021, p
= 0.0091) and by Health (8 = 0.3247, p = 0.0107).

This study confirmed that parenting practice influ-

ences changes in SO over time. Additionally, high en-
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gagement of caregivers in children’s daily activity may
affect decrease in children’s dependence on smart-
phones. Conversely, increased dependence on smart-
phones in children may be attributed to caregivers
who have difficulty in performing appropriate parent-

ing practices due to physical health problems.

[P36]

The Effect of Changes in Parental
Depression on Parenting Stress and
Children's behavior patterns:

A One-Year Follow—-up Study

Chaniju Kim', YongJeon Cheong',
Seonkyoung Lee', Ji Hyeong Ro', Jihyun Bae',
Yujin Lim"?, Susanna Lee'?, Minyoung Jung'*

'Cognitive Science Research Group, Korea Brain Research
Institute, >Psychology Department, Yeungnam University

¥WAKRE minyoung@kbri.re.kr

Parental depression is an important risk factor that
impacts parenting stress and children’s development.
Parenting stress is the psychological distress that a
caregiver experiences while performing the parenting
role in the process of childrearing and it is related to
multiple aspects of child development. These associa-
tion play a key role in child development but the mu-
tual longitudinal association among parental depres-
sion and children's behavior patterns are not well
understood. This study investigated longitudinal asso-
ciation among parenting stress and children's behavior
patterns according to changes in parental depression.

Participants consisted of 33 parents of elementary
school children (Female: 30, mean age [SDI: 41.15
[£3.04]). All participants completed four ques-
tionnaires measuring parental depression (Korean
Beck Depression Inventory-II: BDI), parenting stress

(Korean Parenting Stress Index: K-PSI), and children's
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behavior patterns (Korean Behavior Assessment
System for Children-2: KBASC-2, Korean Personality
Rating Scale for Children: KPRC). The same ques-
tionnaire was administered twice, 2021 and 2022. We
initially observed a significant decrease in BDI scores
from 2021 to 2022 (t(32)=3.326, p =0.002), indicating
an overall downward trend in depression levels. Then,
to assess parental depression impact, we divide two
group parental depression decreased group (N=20)
and depression increased group (N=13) by calculating
change of BDI scores change from 2021 to 2022.

The parental depression decreased group showed
lower scores in parenting stress total score (K-PSI
subscale, t(31)=3.277, p =0.003) and child hyper-
activity (K-PRC subscale, t(31)=2.997, p =0.005) com-
pared to parental depression increased group. The pa-
rental depression increased group showed lower and
child adaptive skills (K-BASC-2 subscale, t(31)=-3.343,
p =0.002).

This study confirmed that parental depression can
be a risk factor in parenting stress and children's be-
havior patterns. In conclusion, depression symptom
management interventions that incorporate parenting
stress reduction programing may reduce the future
risk of children's behavior patterns among their
children.

[P37]
Development and Validation of the
Korean Child Emotional Face Database
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Facial expressions are potent signals conveying hu-

man emotional states, facilitating investigations into
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emotion processing mechanisms and human responses.
Yet, existing emotional face datasets primarily repre-
sent Western and/or adult samples, neglecting diverse
ethnicities and age groups. Many studies highlight the
necessity for relevant face databases tailored to di-
verse ethnicities and age groups. Thus, prioritizing the
creation of an emotional face database specifically for
Korean children emerges as a critical endeavor.

We developed and validated the Korean Children’s
Emotional Face Database (KCEFD), comprising 151 fa-
cial stimuli portraying seven emotions (.e., happy,
surprise, neutral, afraid, sad, disgust, and anger). A to-
tal of 168 children (93 boys, 75 girls, mean age: 9.18,
range: 6-12) assessed a set of pictures for accuracy,
valence, and clarity.

The overall accuracy of the pictures was 69%; 94%
for happy, 86% for neutral, 94% for surprise, 57% for
sad, 55% for disgust, 89% for anger, and 16% for
afraid. Afraid expressions were primarily perceived as
surprise and disgust. There was also a slight tendency
to confuse disgust with anger and sadness, and sad-
ness with disgust and afraid. The valence varied across
emotions, with happiness rated as the most positive
and anger rated as the most negative (mean valence
3.47, happy 6.14, neutral 3.65, surprise 4.15, sad 2.75,
disgust 2.61, anger 1.97, afraid 3.04). The clarity was
high across the board, but relatively higher for happi-
ness and anger, and lower for afraid which were rated
lower (mean clarity 5.16, happy 5.44, neutral 5.01,
surprise 5.35, sad 4.92, disgust 4.93, anger 5.77, afraid
4.72).

The KCEFD stands as the first emotional face data-
base developed specifically for Korean children. Such
a database can contribute to further understanding the
mechanisms and neural basis of emotional processing

and development in children.
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Machine—learning—based prediction of
photobiomodulation effects for older
adults with cognitive decline using
functional near-infrared spectroscopy
before intervention
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*WHKRE ich@hanyang.ac.kr

Transcranial photobiomodulation (tPBM) has been
widely studied for its potential to enhance cognitive
functions of the elderly. However, its efficacy varies,
with some individuals with cognitive decline exhibit-
ing no significant response to the treatment. Con-
sidering these inconsistencies, we introduce a ma-
chine learning approach aimed at distinguishing be-
tween individuals that respond and do not respond to
tPBM treatment. We use functional near-infrared
spectroscopy (fNIRS), a modality that utilizes near-in-
frared light similar to that used in tPBM, to record the
hemodynamic brain responses. We measured nine

cognitive scores and recorded fNIRS data from 62 old-
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er adults with cognitive decline (43 experimental and
19 control subjects). The experimental group under-
went tPBM intervention at least 20 times over a span
of 12 weeks. Based on the comparison of the global
cognitive score (GCS), merging the nine cognitive
scores into a single representation, acquired before
and after tPBM treatment, we classified all participants
as responders or non-responders to tPBM with a
threshold of 0.5 for the GCS change. The fNIRS data
recorded during the resting state, recognition memory
task (RMT), Stroop task, and verbal memory task (VFT)
were preprocessed, and both the temporal and spatial
features were extracted. A regularized support vector
machine was utilized to classify the responders and
non-responders to tPBM, and the prediction accuracy
was evaluated using a leave-one-subject-out cross-
validation. We identified 22 responders and 21
non-responders to tPBM. The most promising per-
formance of our machine learning model was ob-
served when using the fNIRS data collected during the
RMT, which yielded an accuracy of 85.37%, an
Fl-score of 84.21%, sensitivity of 76.19%, and specif-
icity of 95%. This is the first study to demonstrate the
feasibility of predicting the tPBM efficacy among older
adults with cognitive decline by applying a machine
learning approach to fNIRS data recorded before tPBM

treatment.
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